Rational Tate classes

نویسنده

  • J. S. Milne
چکیده

In despair, as Deligne (2000) put it, of proving the Hodge and Tate conjectures, we can try to find substitutes. For abelian varieties in characteristic zero, Deligne (1982) constructed a theory of Hodge classes having many of the properties that the algebraic classes would have if the Hodge conjecture were known. In this article I investigate whether there exists a theory of “rational Tate classes” on varieties over finite fields having the properties that the algebraic classes would have if the Hodge and Tate conjectures were known. In particular, I prove that there exists at most one “good” such theory. v1 July 20, 2007. First version on the web. v2 November 7, 2007. Completely rewritten; shortened the title. v3 April 29, 2008. Submitted version.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 7 . 31 67 v 3 [ m at h . A G ] 2 9 A pr 2 00 8 Rational Tate classes

In despair, as Deligne (2000) put it, of proving the Hodge and Tate conjectures, we can try to find substitutes. For abelian varieties in characteristic zero, Deligne (1982) constructed a theory of Hodge classes having many of the properties that the algebraic classes would have if the Hodge conjecture were known. In this article I investigate whether there exists a theory of " rational Tate cl...

متن کامل

Isogeny Class and Frobenius Root Statistics for Abelian Varieties over Finite Fields

Let I(g, q, N) be the number of isogeny classes of g-dimensional abelian varieties over a finite field Fq having a fixed number N of Fq-rational points. We describe the asymptotic (for q →∞) distribution of I(g, q, N) over possible values of N . We also prove an analogue of the Sato—Tate conjecture for isogeny classes of g-dimensional abelian varieties. 2000 Math. Subj. Class. Primary: 11G25, 1...

متن کامل

The best uniform polynomial approximation of two classes of rational functions

In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.

متن کامل

On Atkin-lehner Quotients of Shimura Curves

We study the Čerednik-Drinfeld p-adic uniformization of certain AtkinLehner quotients of Shimura curves over Q. We use it to determine over which local fields they have rational points and divisors of a given degree. Using a criterion of Poonen and Stoll we show that the Shafarevich-Tate group of their jacobians is not of square order for infinitely many cases. In [PSt] Poonen and Stoll have sh...

متن کامل

Arithmetic Aspects of Moduli Spaces of Sheaves on Curves

We describe recent work on the arithmetic properties of moduli spaces of stable vector bundles and stable parabolic bundles on a curve over a global field. In particular, we describe a connection between the period-index problem for Brauer classes over the function field of the curve and the Hasse principle for rational points on étale forms of such moduli spaces, refining classical results of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007